The join of split graphs whose completely regular endomorphisms form a monoid
نویسندگان
چکیده
منابع مشابه
A completely dynamic algorithm for split graphs
We present a fully dynamic algorithm for split graphs that supports the following types of operations: (1) query whether deleting or inserting an edge preserves the split property, (2) query whether inserting a new vertex with a given neighborhood in the current graph preserves the split property, (3) insert or delete an edge or a vertex when the split property is preserved, (4) insert an edge ...
متن کاملFamilies of nested completely regular codes and distance-regular graphs
In this paper infinite families of linear binary nested completely regular codes are constructed. They have covering radius ρ equal to 3 or 4, and are 1/2-th parts, for i ∈ {1, . . . , u} of binary (respectively, extended binary) Hamming codes of length n = 2 − 1 (respectively, 2), where m = 2u. In the usual way, i.e., as coset graphs, infinite families of embedded distance-regular coset graphs...
متن کاملThe locating chromatic number of the join of graphs
Let $f$ be a proper $k$-coloring of a connected graph $G$ and $Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into the resulting color classes. For a vertex $v$ of $G$, the color code of $v$ with respect to $Pi$ is defined to be the ordered $k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$, where $d(v,V_i)=min{d(v,x):~xin V_i}, 1leq ileq k$. If distinct...
متن کاملOn nested completely regular codes and distance regular graphs
Infinite families of linear binary nested completely regular codes with covering radius ρ equal to 3 and 4 are constructed. In the usual way, i.e., as coset graphs, infinite families of embedded distance-regular coset graphs of diameter D = 3 or 4 are constructed. In some cases, the constructed codes are also completely transitive codes and the corresponding coset graphs are distance-transitive.
متن کاملOn the Lattice of All Join-endomorphisms of a Lattice
for all x, y£L. It is easily shown that every join-endomorphism is an isotone correspondence (i.e. x^y implies ®x=i 8y). It is also easy to see that the set / of antecedents of 0 under any join-endomorphism is an ideal. (For these and other facts used in the sequel we refer to the textbook of G. Birkhoff, Lattice theory, rev. ed., New York, 1948, henceforth cited as LT.) G. Birkhoff states in L...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Open Mathematics
سال: 2017
ISSN: 2391-5455
DOI: 10.1515/math-2017-0071